CFD Analysis of Liquid Argon Flow in 35 ton prototype and LBNF cryostats

Gregory Michna
Stephen Gent
Aaron Propst

Department of Mechanical Engineering South Dakota State University

June 27, 2017

Simulations to Date

- 35 Ton
- V1 Configuration:
 - Full and symmetric models
- V2 Configuration:
 - Symmetric only

Symmetric Models

- Red: heat enters through wall
- Blue: constant temperature, impurity flux
- Yellow: 23% porous wall
- 9.5 GPM LAr flow rate
- Inlet temperature: 87.808

Impurity Distribution

Fermilab Results

(Erik Voirin, Fermilab)

LBNF Cryostat - Geometry

- APA approx. 80% open
- CPA impermeable
- Field Cage 23% open

LBNF Cryostat - Geometry

LBNF Cryostat – Boundary Conditions

- Top Wall (LAr surface):
 - LAr Saturation Temperature: 88.348 K
 - Passive Scalar Flux: 1
- Remaining Exterior Walls:
 - Heat Flux: 7.2 W/m^2
- Electronics Surfaces:
 - Total Heat Source: 23,700 W
- Inlet Temperature:
 - Maintained at 0.4418 K above outlet temperature to account for pump work
 - Flow rate in table on the right
- Porous Regions: Settings in previous slides

	V1 Full	V1 Sym.	Latest Sym.	
Inlet Flow Rate	4 Pumps	4 (2) Pumps	1 (0.5) pump	
# of Inlets	1	1 (0.5)	12 (6)	
# of Outlets	4	4 (2)	7 (7)	

Single Pump = 103 GPM

Electronics Surfaces in pink

LBNF V1: Symmetry at z = 30.5 m plane (pump discharge)

LBNF V1: Symmetry z = 0 m plane (center of cryostat)

z = 0 m plane (center of cryostat)

Simulations to Date (Continued)

- Latest Configuration:
 - Symmetric: standard operating conditions, electronics turned off, and half LAr flow rate.
 - Running full model: Erik Voirin's results showed significant asymmetry.

Mesh Validation

- Used two mesh types with varying levels of refinement.
- Solutions have been in agreement.
- Polyhedral meshes require more time (about 30%) to solve the passive scalar for impurity distribution.
- Currently using trimmed cell mesh (consists of cubes of varying sizes).

Electronics Turned Off

- Heat flux on electronics set to 0.0 Watts.
- No other changes.

Electronics Off: Temperature at Z = 0.0 m In Line with Outlet

Electronics On

Electronics Off

Electronics Off: Temperature at Z = 2.59 m Between Inlet and Outlet

Electronics On

Electronics Off

Electronics Off: Temperature at Z = 5.17 m In Line with Inlet

Electronics On

Electronics Off

Electronics Off: Temperature at X = 1 m

Electronics Off: Temperature at X = 3 m

Electronics Off: Temperature at X = 6 m

Electronics Off: Impurity at Z = 0.0 m In Line with Outlet

Electronics On

Electronics Off

Electronics Off: Impurity at Z = 2.59 m Between Inlet and Outlet

Electronics On

Electronics Off

Electronics Off: Impurity at Z = 5.17 m In Line with Inlet

Electronics On

Electronics Off

Electronics Off: Impurity at X = 1 m

Electronics Off: Impurity at X = 3 m

Electronics Off: Impurity at X = 6 m

Half Flow Rate

 LAr inlet flow rate changed from 103 GPM to 51.5 GPM

Half Flow Rate: Temperature at Z = 0.0 m In Line with Outlet

Regular Flow Rate

Half Flow Rate

Half Flow Rate: Temperature at Z = 2.59 m Between Inlet and Outlet

Regular Flow Rate

Half Flow Rate

Half Flow Rate: Temperature at Z = 5.17 m In Line with Inlet

Velocity (m/s) 0.0441 0.0661 2.30e-06 0.0220 0.0881 0.110 Z X Temperature (K) 88.87 88.88 88.91 88.93 88.94

Regular Flow Rate

Half Flow Rate

Half Flow Rate: Temperature at X = 1 m

Half Flow Rate: Temperature at X = 3 m

Half Flow Rate: Temperature at X = 6 m

Regular Flow Rate

Half Flow Rate

Half Flow Rate: Impurity at Z = 0.0 m In Line with Outlet

Velocity (m/s) 0.0282 0.0423 0.0141 0.0564 0.0705 Z X Impurity Scaled 1.002 1.003 0.9991 1.000 1.005 1.006

Regular Flow Rate

Half Flow Rate

Half Flow Rate: Impurity at Z = 2.59 m Between Inlet and Outlet

Velocity (m/s) 0.0258 0.0387 0.0129 0.0516 0.0644 ZX Impurity Scaled 1.001 1.002 0.9984 0.9994 1.003 1.004

Regular Flow Rate

Half Flow Rate

Half Flow Rate: Impurity at Z = 5.17 m In Line with Inlet

Regular Flow Rate

Half Flow Rate

Half Flow Rate: Impurity at X = 1 m

Half Flow Rate: Impurity at X = 3 m

Half Flow Rate: Impurity at X = 6 m

Latest Design: Field Cage Impurity Range Information

- Turning off the electronics does not significantly affect the scaled min/max or standard deviation.
- Half LAr recirculation rate decreases the max value and standard deviation

Field Cage Impurity Values: scaled so that the average impurity in the field cage is equal to 1. Table lists percent above/below average.								
	V1 Design	Poly	New Poly	Trimmed	No Elec	Half Flow		
Max Value	7.9%	2.13%	1.27%	1.34%	1.51%	0.71%		
Min Value	-11.8%	-4.76%	-4.30%	-5.93%	-4.24%	-3.20%		
Standard Dev.	1.63E-02	1.41E-03	1.38E-03	1.72E-03	1.70E-03	1.04E-03		

Simulation with Trimmed Mesh Variation:

• Scaled max: 1.13% to 1.58%

• Scaled min: -3.44% to -12.91%

Standard Deviation: 1.59E-03 to 1.88E-03

Simulation with Trimmed Mesh and Half Flow Rate Variation:

Scaled max: 0.60% to 0.87%

Scaled min: -1.68% to -9.65%

Standard Deviation: 9.04E-04 to 1.21E-03

Future Work

- Full (not symmetric) model of latest design
 - Erik Voirin's simulation showed significant asymmetry.
- Add monitors to track unsteadiness:
 - Monitor fluctuation in scaled min. and max. field cage impurity.
 - Track location of scaled min. and max. field cage impurity.
 - Monitor field variance in impurity distribution
- Possibility of simulating ProtoDUNE.

